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Abstract
Multi-agent artificial intelligence systems are increasingly deployed
in clinical settings, yet the relationship between component-level
optimization and system-wide performance remains poorly under-
stood. We evaluated this relationship using 2,400 real patient cases
from the MIMIC-CDM dataset across four abdominal pathologies
(appendicitis, pancreatitis, cholecystitis, diverticulitis), decompos-
ing clinical diagnosis into information gathering, interpretation,
and differential diagnosis. We evaluated single agent systems (one
model performing all tasks) against multi-agent systems (special-
ized models for each task) using comprehensive metrics spanning
diagnostic outcomes, process adherence, and cost efficiency. Our
results reveal a paradox: while multi-agent systems generally out-
performed single agents, the component-optimized or Best of Breed
system with superior components and excellent process metrics
(85.5% information accuracy) significantly underperformed in diag-
nostic accuracy (67.7% vs. 77.4% for a top multi-agent system). This
finding underscores that successful integration of AI in healthcare
requires not just component level optimization but also attention to
information flow and compatibility between agents. Our findings
highlight the need for end to end system validation rather than
relying on component metrics alone.
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1 Introduction
Artificial intelligence (AI) is rapidly transforming healthcare across
diagnosis [1], treatment planning [2], and patient management [3].
As AI systems grow in complexity, the focus has shifted from single-
model solutions toward networks of specialized models (“agents”)
[4] that collaboratively handle different aspects of patient care. Re-
cent studies, including Google DeepMind’s AMIE [5], have demon-
strated agent-based systems exceeding primary care physicians’
performance in randomized clinical settings, while frameworks like
MASH [6] and CRAFT-MD [7] have explored both the potential
and pitfalls of multi-agent approaches.

Multi-agent AI systemsmirror interdisciplinary healthcare teams,
where specialists such as radiologists, pathologists, and physicians
collaborate to synthesize comprehensive diagnoses. This modular

approach can improve interpretability [8], simplify troubleshooting,
and enable task-specific optimization [9]. However, a critical chal-
lenge arises from interactions among individually optimized agents
[10]. We term this the Optimization Paradox: the phenomenon
where excellent performance at the individual agent or component
level does not necessarily translate to high overall system perfor-
mance. This misalignment between individual and system-level
effectiveness poses risks to patient safety and clinician trust.

This study addresses the Optimization Paradox within clinical de-
cision support systems by examining three essential components of
the diagnostic process: information gathering (ordering appropriate
clinical tests), interpretation (analyzing lab results), and differential
diagnosis (identifying potential medical conditions) (Figure 1). We
compare multi-agent systems, where specialized agents manage
each task, to single-agent systems, where one model performs all
tasks. Our evaluation uses the MIMIC-CDM dataset comprising
2,400 real patient cases across four common abdominal pathologies
[11].

We introduce clinically relevant evaluations extending beyond
diagnostic accuracy to include process metrics (appropriate test
ordering and accurate lab value interpretation) and cost efficiency
metrics (clinical resource utilization and computational demands).
Our findings reveal that while certain multi-agent systems achieve
impressive process-level performance, this does not always trans-
late into clinical effectiveness. The component-optimized or Best of
Breed system exemplifies this paradox: despite achieving 85.5% ac-
curacy in lab interpretation, its overall diagnostic accuracy (67.7%)
was significantly lower than a top performing multi-agent system
(77.4%; McNemar’s test, p < 0.001) without component optimiza-
tion. This 10-percentage accuracy drop poses clinically significant
risks, potentially increasing misdiagnoses and compromising pa-
tient outcomes when AI systems are deployed solely based on
component-level validation [12].

Our study underscores the necessity of rigorous, end-to-end
validation of AI systems prior to clinical implementation, emphasiz-
ing that effective patient outcomes depend on careful system-wide
integration rather than isolated component excellence.

2 Methods
This study utilized the MIMIC-CDM dataset, a curated subset of
MIMIC-IV containing 2,400 real patient cases [11]. We examined
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Figure 1: Overview of experimental methodology and the Optimization Paradox. The Clinical Decision Support Task Decomposition (left)
breaks the diagnostic process into three specialized components. The Experimental Workflow (center) shows Phase 1 component selection
and Phase 2 system comparison. The Optimization Paradox (right) illustrates the counterintuitive finding: while the Best of Breed system was
constructed from top-performing components, it achieved poor diagnostic accuracy compared to alternative systems.

four prevalent abdominal pathologies: appendicitis (957 cases), pan-
creatitis (538 cases), cholecystitis (648 cases), and diverticulitis (257
cases). These conditions were selected based on their high emer-
gency department prevalence [13, 14], diagnostic complexity due
to overlapping presentations [15], and comprehensive clinical data
availability within MIMIC-CDM. All patients presented with acute
abdominal pain and received one of these four diagnoses.

Each case encompasses complete clinical data including patient
history, physical examination findings, laboratory results (138,788
values from 480 unique tests), imaging reports (5,959 reports: ab-
dominal CT, ultrasound, X-ray), and procedural information. All
data was de-identified with primary diagnoses masked to prevent
pattern matching.

2.1 Decomposition of the Clinical Decision
Support Task

We adaptedMIMIC-CDM’s framework, decomposing the diagnostic
workflow into three tasks: (1) InformationGathering—requesting
relevant clinical data including physical examination, laboratory
tests, and imaging; (2) Information Interpretation—processing
raw clinical data and classifying results relative to reference ranges;
and (3) Differential Diagnosis—synthesizing information to gen-
erate ranked diagnostic possibilities through clinical reasoning.

We compared single-agent systems performing all tasks end-to-
end versus multi-agent systems with specialized task division. A
Retriever LLM processed information requests and retrieved speci-
fied tests from patient records, maintaining data integrity. GPT-4o
was selected for cost-effectiveness and 100% retrieval accuracy.

2.2 Data Splits
We reserved 20 cases (5 per pathology) as a pilot set for prompt
development and pipeline testing, excluding them from all eval-
uations. The remaining 2,380 cases were stratified by pathology
and split equally: 1,190 cases for development (Phase 1 component
selection to construct the Best of Breed system) and 1,190 cases for
held-out testing (Phase 2 final performance evaluation). No training
or fine-tuning was performed.

2.3 Model Implementation
We created agents using LLMs frommultiple families including GPT
(GPT-4o, GPT-4.1), Claude (Claude-3.5-Sonnet), Gemini (Gemini-
1.5-Pro, Gemini-2.0-Flash), Llama (Llama-3.3-70b), and reasoning
models (o3-mini, DeepSeek-R1). API calls to all models were made
through a secure cloud computing environment, ensuring patient
data remained within the institutional environment and maintain-
ing full HIPAA compliance.

2.4 Evaluation Metrics
We assessed performance using a set of metrics spanning diagnostic
outcomes, process adherence, and cost efficiency. These metrics
were designed to capture the quality of final diagnostic decisions,
the clinical appropriateness of the decision-making process, and
resource utilization throughout the workflow.

2.4.1 OutcomeMetrics We evaluated diagnostic accuracy across
multiple dimensions to assess the quality of clinical reasoning:
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• Overall accuracy:Micro-averaged (treating each case equally)
and macro-averaged (treating each pathology equally) accu-
racy across all patients.

• Disease-specific accuracy: Individual accuracy for each of
the four target pathologies (appendicitis, pancreatitis, chole-
cystitis, diverticulitis).

• Top-k accuracy: Frequency with which the correct diagno-
sis appeared in the top 1, 3, or 5 positions of the ranked dif-
ferential diagnosis list, reflecting real-world scenarios where
clinicians consider multiple possibilities.

2.4.2 Process Metrics We assessed adherence to established clin-
ical guidelines for information gathering and interpretation, which
are essential for evidence-based medical practice:

Information gathering was evaluated along four key dimen-
sions:

• Coverage:We identified recommended physical examina-
tion maneuvers, laboratory test categories, and imaging
modalities for each pathology based on published clinical
guidelines [16–23]. Coverage scores assessed the proportion
of recommended categories requested:

Coverage Score =
𝑁lab + 𝑁img + 𝑁maneuver

𝑁lab_rec + 𝑁img_rec + 𝑁maneuver_rec

where 𝑁 represents covered categories and 𝑁rec represents
total recommended categories for laboratory tests, imaging,
and physical examination, respectively. High coverage in-
dicates comprehensive, guideline-concordant information
gathering.

• Guideline adherence for physical examination: Clinical
guidelines recommend physical examination as the initial
diagnostic step for acute abdominal symptoms.Wemeasured
the percentage of cases where agents correctly ordered phys-
ical examination first.

• Average number of tests per patient: Average number
of diagnostic tests (laboratory, imaging, and physical exami-
nation maneuvers) requested per patient, providing insight
into resource utilization patterns.

• Coverage-to-test ratio: Balances comprehensive test as-
sessment with efficient resource utilization:

Coverage-to-test ratio =
Coverage Score

Average tests per patient

This metric rewards high guideline adherence with minimal
test ordering, balancing diagnostic necessity against cost and
patient burden. We examined the relationship between this
ratio and diagnostic accuracy using Spearman correlation
analysis.

Information interpretation was measured as the percentage
of lab values correctly classified as “high,” “normal,” or “low” relative
to reference ranges—a fundamental clinical skill requiring basic
numerical literacy.

2.4.3 Cost Efficiency Metrics

• Computational cost: Estimated cost based on token usage
and publicly available API pricing for each model.

• Clinical resource cost: Average reimbursement cost for
all laboratory tests ordered per patient, providing a realis-
tic estimate of healthcare expenditure associated with each
system’s diagnostic approach.

2.5 Experiments
2.5.1 Phase 1: Component Selection and Best of Breed Con-
struction Individual LLMs performed all three tasks end-to-end
on the development set (n=1,190). We selected the top-performing
agent for each task to construct the Best-of-Breed (BoB) system:

• BoB Information Gathering Agent: Selected for highest
coverage-to-test ratio with coverage score >0.5, preventing
spuriously high ratios from low coverage.

• BoB Information InterpretationAgent: Selected for high-
est laboratory interpretation accuracy.

• BoB Differential Diagnosis Agent: Selected for highest
diagnostic accuracy (micro-averaged/top-1).

2.5.2 Phase 2: System Performance Comparison All systems
were evaluated on the held-out test set (n=1,190) to assess real-
world performance and investigate the optimization paradox. The
evaluation included:

• Single-Agent Systems: Individual LLMs performing all
three tasks end-to-end, serving as baselines for comparison.

• Multi-Agent Systems: Three specialized agents coordi-
nated by a basic orchestrator using conditional logic to route
tasks appropriately (Figure 2). The orchestrator implemented
a defined workflow with explicit handoffs: (1) Information
Gathering Agent requests tests, (2) Retriever LLM fetches
requested data, (3) Information Interpretation Agent pro-
cesses lab results, and (4) Differential Diagnosis Agent gen-
erates ranked diagnoses. Complete implementation details
are provided in the supplementary material. These systems
are categorized by their model backbone composition:
– Homogeneous: All three agents use the same backbone
(e.g., GPT-4o/GPT-4o/GPT-4o)

– Mixed: Two agents share a backbone, one differs (e.g.,
GPT-4o/GPT-4o/Gemini-Flash)

– Heterogeneous: All three agents use distinct backbones
(e.g., GPT-4o/Claude-3.5/Gemini-Flash)

• Best of Breed System:Aheterogeneousmulti-agent system
constructed using the top-performing agent from Phase 1 for
each specialized task. Given the computational complexity
of evaluating all possible heterogeneous combinations, we
constructed additional systems by selecting the next best
performing LLMs for each component, ensuring meaningful
diversity.

2.6 Statistical Analysis
Primary Metrics:We used win rate as our primary performance
metric, defined as the percentage of pairwise comparisons where
one system type outperforms another. Win rates are robust for
small sample sizes and less sensitive to outliers.

Statistical Tests:We applied Mann-Whitney U tests for group
comparisons (e.g., single-agent vs. multi-agent systems) and McNe-
mar’s test for paired comparisons between specific systems (e.g.,
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Figure 2: System architectures and workflows demonstrated with an acute appendicitis case. Left panel: Single-agent system where one
LLM handles the complete clinical workflow from patient history through information gathering, interpretation, and differential diagnosis.
Right panel: Multi-agent system where an orchestrator coordinates specialized agents for each task.

Best of Breed vs. other systems). We report test statistics, p-values,
and 95% confidence intervals.

Effect Size Analysis:We complemented statistical tests with
effect size measures to quantify the magnitude of performance
differences:

• Cohen’s d: For comparing different system types (e.g., single-
agent vs. multi-agent)

• Glass’s Delta: Used for comparing a specific agent system
(e.g., Best of Breed) against a reference group (e.g., all other
multi-agent systems), calculated as:𝑑 =

Meanspecific−Meanreference
SDreference

Effect sizes were interpreted using standard conventions: small
(𝑑 = 0.2), medium (𝑑 = 0.5), and large (𝑑 = 0.8) effects.

3 Results
3.1 Phase 1: Component Selection and Best of

Breed Construction
We evaluated individual LLMs on all three tasks using the develop-
ment set (n=1,190). The top performers for each task formed our
Best of Breed system (Table 1).

• InformationGathering:GPT-4o achieved the highest coverage-
to-test ratio (0.107) with good average coverage per patient
(0.64), making it an optimal information gathering agent.

• Information Interpretation: GPT-4.1 led in laboratory
interpretation tasks with 85.4% accuracy in classifying lab
values relative to reference ranges.

• Differential Diagnosis: Gemini-2.0-Flash demonstrated
superior micro-averaged diagnostic accuracy (78%).

Based on these evaluations, we constructed the Best of Breed sys-
tem using GPT-4o for information gathering, GPT-4.1 for informa-
tion interpretation, and Gemini-2.0-Flash for differential diagnosis.

LLM Info Gathering Info Interp Diag Acc
Gemini-2.0-Flash 0.091 83.9 77.98
GPT-4o 0.107 84.2 76.47
Claude-3.5-Sonnet 0.097 83.9 75.13
Llama-3.3-70b 0.088 75.9 74.96
DeepSeek-R1 0.086 71.9 74.87
GPT-4.1 0.082 85.4 73.95
Gemini-1.5-Pro 0.082 79.8 72.77
o3-mini 0.081 81.6 61.6

Table 1: Task-level performance for single-agents with the best
value for each task highlighted in bold. Coverage-to-test ratio
measures information gathering, lab interpretation accuracy reflects
information interpretation, andmicro-averaged diagnostic accuracy
represents differential diagnosis capability.

3.2 Phase 2: System Performance Comparison
A total of 8 single-agent and 26 multi-agent systems were evaluated
on the held-out test set (Table 2).

3.2.1 Multi-Agent vs Single-Agent Systems Multi-agent sys-
tems (n=26) significantly outperformed single-agent systems (n=8)
on process metrics, winning 78.4% of pairwise comparisons for
information gathering (p = 0.015), 87.5% for information interpre-
tation (p = 0.0008), and 76.9% for computational cost (p = 0.022).
However, multi-agent system advantages were modest and non-
significant for diagnostic accuracy (52.9% win rate) and clinical
resource costs (60.1% win rate). Thus, multi-agent systems enhance
process quality and computational efficiency but show limited im-
provement in clinical outcomes. Notably, the coverage-to-test ratio
showed no significant correlation with diagnostic accuracy (Spear-
man’s 𝜌 = −0.057, 𝑝 = 0.748), suggesting the disconnect between
process metrics and outcomes. All raw numbers can be found in
Appendix 4.4.
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Metric Category
Multi-Agent Systems vs.
Single-Agent Systems

(Win Rate for Multi-Agents)

BoB System vs. Other
Multi-Agent Systems
(Win Rate for BoB)

BoB System vs.
Single-Agent Systems
(Win Rate for BoB)

Information Gathering 78.4% (Cohen’s 𝑑 = 1.06) 80.0% (Glass’s Δ = 1.29) 100% (Glass’s Δ = 1.66)
Information Interpretation 87.5% (Cohen’s 𝑑 = 1.79) 76.0% (Glass’s Δ = 0.60) 100% (Glass’s Δ = 1.44)
Diagnosis Accuracy 52.9% (Cohen’s 𝑑 = 0.05) 8.0% (Glass’s Δ = −1.04) 12.5% (Glass’s Δ = −1.15)
Computational Cost 76.9% (Cohen’s 𝑑 = 0.96) 80.0% (Glass’s Δ = 0.81) 87.5% (Glass’s Δ = 0.92)
Clinical Resource Cost 60.1% (Cohen’s 𝑑 = 0.31) 84.0% (Glass’s Δ = 1.46) 87.5% (Glass’s Δ = 1.31)

Table 2: Win rates (%) between multi-agent, BoB, and single-agent systems across multiple evaluation metrics. Coverage-to-test ratio measures
information gathering, lab interpretation accuracy reflects information interpretation , and micro-averaged diagnostic accuracy represents
differential diagnosis capability. Effect sizes are reported using Cohen’s 𝑑 for parametric comparisons and Glass’s Δ for non-parametric
comparisons (Bold indicates large or medium effect size, |Cohen’s 𝑑 | ≥ 0.5 or |Glass’s Δ| ≥ 0.5).

3.2.2 Best of Breed vs Multi-Agent Systems: The Optimiza-
tion Paradox The Optimization Paradox emerged when compar-
ing the Best of Breed system against other multi-agent systems
(n=25). While BoB achieved high win rates across process metrics
including information gathering (80.0%), information interpreta-
tion (76.0%), computational cost (80.0%), and clinical resource cost
(84.0%), it underperformed in diagnostic accuracy with only an 8.0%
win rate.

Direct comparison with the top-performing multi-agent system
revealed that BoB’s diagnostic accuracy (67.65%) was significantly
lower than the baseline (77.39%), representing a 9.75% decrease
(95% CI: 7.11% to 12.38%; McNemar’s test, p < 0.0001). This con-
trast between strong component performance and poor diagnostic
outcomes demonstrates the Optimization Paradox: optimizing indi-
vidual components can undermine overall system performance.

3.2.3 Best of Breed vs Single-Agent Systems The Optimiza-
tion Paradox became even more pronounced when comparing the
Best of Breed system against single-agent systems (n=8). While BoB
achieved perfect win rates across process metrics including infor-
mation gathering (100%) and information interpretation (100%),
along with strong performance in cost efficiency metrics including
computational cost (87.5% win rate) and clinical resource cost (87.5%
win rate), it critically underperformed in diagnostic accuracy with
only a 12.5% win rate.

Direct comparison with the top-performing single-agent system
revealed that BoB’s diagnostic accuracy (67.65%) was significantly
lower than the baseline (75.63%), representing a 7.98% decrease
(95% CI: 5.39% to 10.57%; McNemar’s test, p < 0.0001). This contrast
between strong operational metrics and poor diagnostic outcomes
further confirms that optimizing individual components can under-
mine overall system performance.

3.2.4 Model Backbone Effects on Diagnostic Performance
The Optimization Paradox in our Best of Breed system prompted
investigation into whether diagnostic performance relates to model
diversity within multi-agent systems. We compared diagnostic ac-
curacy across homogeneous systems (n=7, all agents from same
backbone), mixed systems (n=12, two agents from one backbone),
and heterogeneous systems (n=6, all agents from different back-
bones, including BoB). We excluded one extreme outlier (DeepSeek
system with 54% accuracy) from the homogeneous group analysis.

Homogeneous systems (median = 74.29%) showed no signifi-
cant difference from mixed systems (median = 74.75%; p = 0.967,
Cohen’s d = 0.019). However, heterogeneous systems (median =
71.22%) demonstrated lower performance than both homogeneous
(p = 0.073, Cohen’s d = 1.41) and mixed systems (p = 0.039, Co-
hen’s d = 1.17). While p-values did not reach Bonferroni-corrected
significance (𝛼 = 0.0167), the large effect sizes suggest heteroge-
neous compositions face inherent diagnostic challenges, potentially
explaining the Optimization Paradox.

3.2.5 WhyBest of Breed Fails: Information FlowBreakdown
To understand why the Best of Breed system failed despite superior
component metrics, we conducted systematic error analysis on
all 1,190 test cases, comparing failure patterns against the top-
performing multi-agent system (Table 3).

Failure Type Best of Breed Top Multi-Agent System

Overall Performance
Hallucinated Test Results 165 (13.87%) 5 (0.42%)
Unauthorized Test Ordering 165 (13.87%) 9 (0.76%)
Insufficient Info Gathering 84 (7.06%) 23 (1.93%)

Head-to-Head Comparison
Hallucinated Test Results 81 (46.55%) 0 (0.00%)
Insufficient Info Gathering 63 (36.21%) 0 (0.00%)
Other Failures 30 (17.24%) 0 (0.00%)

Table 3: System failure comparison showing overall performance
(1,190 cases) and head-to-head analysis of 174 cases where the top-
performing multi-agent system succeeded but Best of Breed failed.

Information Gathering Failures: BoB’s information gathering
agent (GPT-4o) exhibited critical failure patterns, including insuf-
ficient information gathering in 7.06% of cases where the agent
concluded test gathering despite missing essential diagnostic infor-
mation, particularly imaging tests in pancreatitis cases.

Diagnosis Agent Failures: These information deficits triggered
compensatory behaviors in BoB’s diagnosis agent (Gemini-2.0-
Flash). When faced with insufficient data, the agent violated pro-
tocol by attempting unauthorized test ordering in 13.87% of cases,
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and then hallucinated test results at the same rate. This represents
a serious safety failure in clinical decision-making.

Top-Performing Multi-Agent System Success: In contrast, the top-
performing multi-agent system (using Gemini-2.0-Flash for infor-
mation gathering and interpretation and GPT-4o for diagnosis)
demonstrated superior information flow management with lower
failure rates: only 1.93% insufficient information gathering, 0.76%
unauthorized test ordering, and 0.42% hallucinated results, repre-
senting a 33-fold reduction in hallucination compared to BoB.

Head-to-Head Analysis: Direct comparison of 174 cases where
the top-performing multi-agent system succeeded but BoB failed
revealed that nearly half (46.55%) involved test result hallucination,
while 36.21% showed insufficient information gathering. These
findings demonstrate that the Optimization Paradox stems from
fundamental agent compatibility issues rather than individual com-
ponent deficiencies.

These results show that component-level metrics cannot capture
agent interactions. Individually superior agents may create sys-
tematic coordination failures when combined, undermining overall
performance despite strong standalone capabilities.

4 Discussion
Our study reveals a strikingOptimization Paradox in multi-agent
systems: the Best of Breed system, built from top-performing com-
ponents, excelled in process and cost efficiency metrics yet achieved
only 67.7% diagnostic accuracy. This level of performance, coupled
with test result hallucination in 13.87% of cases, is clinically unac-
ceptable and represents a serious safety hazard, potentially leading
to delayed or incorrect treatment, unnecessary procedures, and
adverse outcomes [12]. This paradox demonstrates that successful
multi-agent systems require not just component optimization but
careful attention to information flow between agents.

Several factors explain this surprising outcome. First, our process
metrics captured whether agents followed guidelines but missed
diagnostic relevance. Thus, the Best of Breed system efficiently fol-
lowed clinical guidelines, but these metrics failed to assess whether
collected data matched the diagnostic agent’s specific requirements.

Second, the diagnostic agent showed poor adaptability when
processing information from unfamiliar upstream partners. During
Phase 1 evaluation, it performed well on its specialized task. When
combined with other top-performing agents in the Best of Breed
system in Phase 2, the information flow and formatting patterns
were disrupted, causing systematic diagnostic failures. This high-
lights that multi-agent systems require holistic evaluation rather
than component-level optimization.

Our backbone composition analysis reveals the underlying mech-
anism: while mixed systems (two identical + one different model)
performed as well as homogeneous systems, heterogeneous systems
like Best of Breed showed significant degradation. The coordination
challenges likely stem from fundamental differences in how model
backbones process and communicate information. Each backbone
(GPT, Claude, Gemini) has distinct training approaches, prompt
sensitivity patterns, and output formatting preferences. When these
different “communication styles” interact, information may be lost
or misinterpreted during handoffs. Our error analysis confirms

this mechanism: in the 174 cases where the top-performing system
succeeded but Best of Breed failed, nearly half (46.55%) involved
dangerous test result hallucination, while the compatible agents
showed no hallucination failures.

These technical findings have important practical implications
for AI deployment. Healthcare organizations should exercise cau-
tion when adopting modular AI solutions, as component metrics
poorly predict integrated performance. Procuring best-in-class
point solutions for each task while expecting seamless integra-
tion can create nominally efficient but ultimately ineffective and
potentially unsafe pipelines. End-to-end validation against clini-
cal outcomes is essential before deployment. In addition, regula-
tory frameworks should require system-level performance evidence
rather than relying solely on component accuracy metrics.

Several limitations warrant consideration. The dataset (2,400
cases from a single academic center) limits generalizability across
institutions and patient populations, and lacks external validation.
Our focus on four abdominal pathologies may not generalize to
other clinical domains. Additionally, our component selection pri-
oritized single metrics per task rather than multi-dimensional opti-
mization strategies, and our multi-agent system used basic orches-
tration without iterative reasoning or dynamic agent communica-
tion.

Future work should develop process metrics that better correlate
with clinical outcomes, investigate selection methods that opti-
mize for system-level performance rather than isolated component
excellence, and explore dynamic agent architectures capable of it-
erative reasoning and self-correction. Most importantly, external
validation across diverse clinical settings is needed to establish the
generalizability of the Optimization Paradox.

Supplementary Material
Additional details including prompt development, guideline recom-
mended tests, and orchestrator implementation are provided in the
supplementary material document.
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Supplementary Material

4.1 Prompt Development

Single-agent:
# SYSTEM PROMPT
"""
You are a medical-AI assistant helping a physician diagnose and treat patients.
**Always follow the exact output formats below.**
------------------------------------------------------------------------
FORMAT 1 (when you still need more information)
Thought: <your reasoning about what information is needed and why>

[If the immediately-preceding message is a Tool output that contains
laboratory values, INSERT the next section exactly once.]

Lab Interpretation: {
"test_name": {"value": <number>, "interpretation": "high/normal/low"},
...

}
Action: <one of: Physical Examination |
Laboratory Tests | Imaging>
Action Input: <comma-separated list of specific tests, imaging studies or
physical exam maneuver you are requesting.>
IMPORTANT: You can only request one action type at a time. Do not combine
multiple action types.
------------------------------------------------------------------------
FORMAT 2 (when you are ready to give the final answer)
Thought: <your complete clinical reasoning>
**Final Diagnosis (ranked):**
1. <most likely diagnosis>
2. <second most likely diagnosis>
3. <third most likely diagnosis>
4. <fourth most likely diagnosis>
5. <fifth most likely diagnosis>
Treatment: <detailed evidence-based treatment plan>

**IMPORTANT: After providing FORMAT 2, your task is COMPLETE. Do NOT request
any further actions or tools. FORMAT 2 is the FINAL output.
Once you provide FORMAT 2, the conversation ENDS.**
------------------------------------------------------------------------
HARD RULES (read carefully)

1. **Mandatory Lab Interpretation**
• If the last message you received is a Tool output with lab data, you MUST
include the “Lab Interpretation” JSON block.
• If you omit it, your answer will be rejected and you will be asked
to try again.

2. JSON validity
• The Lab Interpretation block must be valid JSON (double quotes,
no trailing commas).
• Include both the numeric value and the interpretation (“high”, “normal”,
or “low”) for every test you mention.

3. Do NOT mix elements from different formats.

4. “Action Input” is **only** for naming new tests or imaging studies you want
to order. Never place results or interpretations there.

5. **Action Input Content:** The "Action Input" field should ONLY contain
a comma-separated list of test names, imaging studies, or
physical exam maneuvers. Do NOT include any thoughts, reasoning, interpretations,
or other text in the "Action Input" field.

6. **STOP AFTER FORMAT 2:** Once you have provided FORMAT 2
(Final Diagnosis and Treatment), you MUST stop. Do NOT ask for any more
information or tools after FORMAT 2.

7. Stop asking for additional information
when you are confident enough to provide FORMAT 2.
------------------------------------------------------------------------
EXAMPLES

Lab Interpretation: {
"WBC": {"value": 12.5, "interpretation": "high"},
"CRP": {"value": 5.0, "interpretation": "normal"}

}
Action: Laboratory Tests
Action Input: Serum Lipase, Abdominal Ultrasound
Action: Physical Examination
Action Input: McBurney's Point Tenderness
"""

Figure 3: Prompts used for the single-agent systems.

https://aws.amazon.com/blogs/machine-learning/unlocking-complex-problem-solving-with-multi-agent-collaboration-on-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/unlocking-complex-problem-solving-with-multi-agent-collaboration-on-amazon-bedrock/
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Multi-agent:
# INFORMATION GATHERING AGENT

INFO_GATHERING_PROMPT = """\
You are a medical-AI assistant helping a physician COLLECT information that
will later be used to diagnose and treat the patient.
**Always follow the exact output formats below.**
------------------------------------------------------------------------
FORMAT 1 (when you still need more information)

Thought: <your reasoning about what information is needed and why>
Action: <one of: Physical Examination | Laboratory Tests | Imaging>
Action Input: <comma-separated list of specific tests, imaging studies or
physical exam maneuver you are requesting.>

IMPORTANT: You can only request one action type at a time. Do not combine
multiple action types.
------------------------------------------------------------------------
FORMAT 2 (when you are done collecting information)

Thought: <your complete clinical reasoning>
Action: done
Action Input: ""

**IMPORTANT: After providing FORMAT 2, your task is COMPLETE. Do NOT request
any further actions or tools.
FORMAT 2 is the FINAL output. Once you provide FORMAT 2, conversation ENDS.**

------------------------------------------------------------------------
HARD RULES (read carefully)

1. Do NOT mix elements from different formats.

2. “Action Input” is **only** for naming new tests or imaging studies
you want to order. Never place results or interpretations there.

3. **Action Input Content:** The "Action Input" field should ONLY contain
a comma-separated list of test names, imaging studies, or physical exams.
Do NOT include any thoughts, reasoning, interpretations, or other text
in the "Action Input" field.

4. **STOP AFTER FORMAT 2:** Once you have provided FORMAT 2, you MUST stop.
Do NOT ask for any more information or tools after FORMAT 2.

5. Stop asking for additional information when you are confident enough
to provide FORMAT 2.
"""

# INFORMATION INTERPRETATION AGENT
INTERPRETATION_PROMPT = """\
You are a medical-AI assistant helping a physician interpret lab results
that have already been retrieved.
**Always follow the exact output formats below.**

------------------------------------------------------------------------
FORMAT (interpret the lab panel you just received)

[If the immediately-preceding message is a Tool output that contains lab
values, INSERT the next section exactly once.]

Lab Interpretation: {
"test_name": {"value": <number>, "interpretation": "high/normal/low"},
...

}

**IMPORTANT: After providing this FORMAT, your task is COMPLETE.
Do NOT request any further actions or tools. This FORMAT is the FINAL output.
Once you provide this FORMAT, the conversation ENDS.**
HARD RULES (read carefully)

1. **Mandatory Lab Interpretation**
• If the last message you received is a Tool output with lab data,
you MUST include the “Lab Interpretation” JSON block
• If you omit it, your answer will be rejected and you will be asked

to try again.

2. JSON validity
• The Lab Interpretation block must be valid JSON (double quotes,

no trailing commas).
• Include both the numeric value and the interpretation

(“high”, “normal”, or “low”) for every test you mention.

3. Do NOT mix elements from different formats.
"""

Figure 4: Prompts used for the multi-agent systems.

Retriever LLM:

LABS_MATCHER_PROMPT = """
Available laboratory tests and their results: {available_tests}.
Requested tests: {requested_tests}.

Please retrieve and return the results for the requested tests.
Return each test name along with its corresponding result.
If a test is not available, state that.
Respond in natural language
"""

IMAGING_MATCHER_PROMPT = """
Available imaging studies: {available_imaging}.
Requested imaging: {requested_imaging}.

Please retrieve and return the full report only
for the imaging study that best matches the
requested imaging from the available list.
If the requested imaging is not available, state that.
Do not propose or mention any additional or alternative tests or imaging.
Return the study name along with the full report.
Respond in natural language.
"""

Figure 5: Prompts used for the retriever LLM.

4.2 Guideline recommended tests

Pathology Physical Exam Maneu-
ver

Synonyms

Appendicitis McBurney’s Point Tender-
ness

mcburney, mcburney’s,
mcburney point, mcbur-
ney’s point, point of
mcburney, mcburney
tenderness, right iliac
tenderness, tenderness at
mcburney, tenderness at
mcburney’s point

Cholecystitis Murphy’s Sign murphy, murphy’s, mur-
phy sign, murphy’s sign,
inspiratory arrest, halted
inspiration, interruption of
breath, breath catching,
respiratory arrest with pal-
pation

Diverticulitis Left Lower Quadrant Ten-
derness

left lower quadrant, llq, sig-
moid, sigmoid tenderness,
tenderness over sigmoid,
left iliac fossa, lif, left-sided
abdominal tenderness, sig-
moid colon tenderness

Pancreatitis Epigastric Tenderness epigastric, epigastrium, up-
per abdominal, mid-upper
abdomen, central upper
abdomen, transabdominal
tenderness, midline up-
per abdomen, central ab-
dominal tenderness, mid-
epigastric

Table 4: Physical Examinations and Synonyms by Pathology
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Pathology Recommended Tests

Appendicitis Inflammation:
• White Blood Cell Count (WBC)
• C-Reactive Protein (CRP)

Cholecystitis Inflammation:
• White Blood Cell Count (WBC)
• C-Reactive Protein (CRP)
Assess the risk of Chronic Bile Duct
Stones (CBDS):
• Alanine Transaminase (ALT)
• Aspartate Transaminase (AST)
• Alkaline Phosphatase (ALP)
• Gamma Glutamyltransferase (GGT)
• Bilirubin

Diverticulitis Inflammation:
• White Blood Cell Count (WBC)
• C-Reactive Protein (CRP) (predicts sever-
ity)

Pancreatitis Serum pancreatic enzyme:
• Lipase
• Amylase
Other:
• C-Reactive Protein (CRP)
• Hematocrit
• Blood Urea Nitrogen (BUN)
• Procalcitonin
• serum triglyceride and calcium levels (in

absence of gallstones or significant alcohol
use)

Table 5: Recommended Lab Tests by Pathology

4.3 Orchestrator Implementation
The orchestrator coordinated specialized agents through a sequen-
tial workflow built on LangGraph. Each agent received the patient’s
clinical context and complete conversation history, enabling in-
formed decision-making at each step. The Information Gathering
Agent iteratively requested clinical tests until signaling completion
with "Action: done" or reaching the 10-turn limit, at which point
control passed to subsequent agents. Data retrieval was handled
through the RetrieveResults tool, which processed three types of
requests: physical examinations, laboratory tests, and imaging stud-
ies. When agents requested specific tests using natural language
(e.g., "Complete blood count, C-reactive protein"), GPT-4o served
as a retriever to identify and return the relevant patient data from
clinical records.

Example Workflow:
1. Information Gathering Agent: "Action: Physical Examination

Action Input: Abdominal tenderness, McBurney's point"

2. RetrieveResults Tool: Returns physical exam findings

3. Information Gathering Agent: "Action: Laboratory Tests
Action Input: Complete blood count, C-reactive protein"

4. RetrieveResults Tool: Returns lab values

5. Information Interpretation Agent: Processes lab results as
{"WBC": {"value": 15000, "interpretation": "high"}}

6. Information Gathering Agent: "Action: done"

7. Differential Diagnosis Agent: Generates final ranked diagnosis

Figure 6: Sequential processing of a patient case demonstrating the
flow from information gathering through data retrieval, interpreta-
tion, and final diagnosis for acute abdominal pain.

The system incorporated robust error handling, including format
validation with single retry attempts for malformed outputs and
60-second API timeouts with exponential backoff for rate limiting.
When requested tests were unavailable, the workflow continued
with accessible data rather than terminating. Token usage was
tracked separately for each agent phase to enable precise cost cal-
culations across heterogeneous multi-agent configurations.

4.4 Test Set Results
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Agent System Micro Avg Macro Avg Appendicitis Pancreatitis Cholecystitis Diverticulitis Top3 Top5
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Acc Acc

multi_gemini-flash_gemini-flash_gpt 77.39 73.75 93.58 67.64 68.45 65.32 86.05 88.57
multi_gemini-flash_gpt_gpt 77.31 74.69 93.38 66.55 66.25 72.58 87.48 88.91
multi_o3-mini_o3-mini_o3-mini 76.97 73.69 93.8 64.36 68.04 68.55 85.88 88.49
multi_claude_gpt_gpt 76.22 72.94 92.95 69.09 62.78 66.94 85.13 87.48
multi_gemini-flash_gemini-flash_gemini-flash 75.88 71.98 93.63 57.76 68.77 67.74 84.79 87.98
single_gemini-flash_gpt 75.63 71.71 89.62 63.18 70.35 63.71 83.87 87.65
multi_claude_claude_gpt 75.63 72.8 92.52 65.09 63.41 70.16 85.55 87.39
multi_llama_gpt_gpt 75.38 72.87 88.89 65.09 68.14 69.35 85.38 88.32
multi_gemini_gemini_gemini 74.96 71.53 87.23 73.55 64.67 60.66 85.21 88.91
multi_gemini_gpt_gpt 74.79 72.01 88.44 72.73 62.66 64.23 84.29 87.73
multi_gemini_gemini_gpt 74.71 72.09 88.46 73.45 60.88 65.57 84.87 87.14
single_gpt-4.1_gpt 74.37 71.08 89.1 71.74 60.57 62.9 83.19 85.55
multi_claude_claude_claude 74.29 70.89 91.53 64.98 59.31 67.74 86.55 88.74
single_gpt_gpt 73.95 71.01 87.82 73.19 59.31 63.71 82.61 84.62
single_llama_gpt 73.95 70.54 87.82 66.3 65.93 62.1 84.79 87.98
single_deepseek_gpt 73.95 70.99 85.68 72.46 63.72 62.1 84.37 86.13
multi_llama_llama_gpt 73.7 70.6 88.22 67.39 63.09 63.71 84.96 87.56
multi_claude_gpt-4.1_gemini-flash 73.19 69.25 91.74 58.12 61.83 65.32 81.43 84.37
multi_llama_gpt-4.1_gemini-flash 72.77 68.54 87.08 61.01 67.19 58.87 82.18 86.13
multi_llama_llama_llama 72.44 69.98 85.47 62.18 66.14 66.13 84.2 88.07
multi_gpt_gpt_claude 71.93 68.35 87.08 64.62 59.62 62.1 83.36 86.89
multi_gpt_gpt-4.1_llama 71.85 69.06 85.04 62.18 65.3 63.71 82.52 86.3
multi_gpt-4.1_gpt-4.1_gpt-4.1 71.76 68.93 85.87 69.09 58.68 62.1 82.94 85.97
single_gemini_gpt 71.09 67.21 81.36 77.98 57.1 52.42 83.03 88.32
multi_gpt_gpt_gpt 71.01 68.36 85.47 58.91 63.72 65.32 81.18 84.29
multi_gpt_claude_claude 70.59 66.8 86.65 61.37 58.68 60.48 82.77 86.55
multi_gpt_gpt-4.1_claude 70.59 67.12 86.44 59.21 59.94 62.9 83.19 87.23
single_claude_gpt 70.59 67.34 85.17 64.98 57.1 62.1 83.11 86.97
multi_gpt-4.1_gpt_gpt 69.33 67.16 83.76 67.64 53 64.23 80.34 83.03
multi_gpt-4.1_gpt-4.1_gpt 69.24 66.9 81.84 70.55 53.94 61.29 80.08 83.19
multi_gpt_gpt-4.1_gemini-flash 67.65 64.6 81.14 54.15 61.83 61.29 76.05 79.16
multi_gpt_claude_gemini-flash 67.39 63.74 80.08 53.43 64.98 56.45 75.97 79.16
single_o3-mini_gpt 63.45 58.76 77.78 57.25 56.47 43.55 74.12 78.57
multi_deepseek_deepseek_deepseek 53.95 55.96 64.3 57.92 51.18 50.43 61.76 63.61

Table 6: Outcome metrics for the single and multi-agent systems on the test set

Agent System Physical Exam Physical Exam Avg Avg Avg Avg Coverage Coverage- Lab
First Any Tools Labs Img Physical Exam Test Ratio Interp

multi_gemini-flash_gemini-flash_gpt 72.27 78.15 6.47 4.25 1.33 3.43 0.71 0.11 82.81
multi_gemini-flash_gpt_gpt 71.09 77.56 6.40 4.22 1.37 3.32 0.71 0.11 85.78
multi_o3-mini_o3-mini_o3-mini 59.41 80.76 5.39 3.01 1.56 2.81 0.65 0.12 85.76
multi_claude_gpt_gpt 89.16 94.20 8.27 5.98 1.35 6.23 0.80 0.10 85.43
multi_gemini-flash_gemini-flash_gemini-flash 72.27 78.49 6.44 4.23 1.31 3.46 0.71 0.11 81.68
single_gemini-flash_gpt 49.75 58.15 7.13 5.23 1.28 2.46 0.67 0.09 80.67
multi_claude_claude_gpt 88.99 93.95 8.18 5.88 1.36 6.18 0.79 0.10 85.47
multi_llama_gpt_gpt 50.17 73.78 8.59 5.83 2.02 2.98 0.81 0.09 87.07
multi_gemini_gemini_gemini 44.12 46.64 7.15 5.60 1.08 3.59 0.62 0.09 77.76
multi_gemini_gpt_gpt 44.71 46.97 7.20 5.67 1.05 3.57 0.62 0.09 85.34
multi_gemini_gemini_gpt 43.95 45.97 7.09 5.58 1.04 3.51 0.63 0.09 78.17
single_gpt-4.1_gpt 63.70 64.03 7.06 5.39 1.00 4.73 0.59 0.08 83.99
multi_claude_claude_claude 88.91 94.79 8.25 5.98 1.33 6.27 0.79 0.10 85.22
single_gpt_gpt 49.92 50.08 4.25 2.98 1.03 0.95 0.52 0.12 83.36
single_llama_gpt 16.55 77.90 9.39 6.67 1.92 2.65 0.82 0.09 75.38
single_deepseek_gpt 51.26 64.71 6.78 4.36 1.11 3.50 0.60 0.09 72.63
multi_llama_llama_gpt 50.42 75.46 8.65 5.90 1.99 3.03 0.81 0.09 84.80
multi_claude_gpt-4.1_gemini-flash 88.99 94.71 8.26 5.96 1.35 6.23 0.80 0.10 83.94
multi_llama_gpt-4.1_gemini-flash 50.59 75.71 8.97 6.13 2.04 3.26 0.82 0.09 85.78
multi_llama_llama_llama 54.87 80.08 8.84 6.02 2.01 3.24 0.83 0.09 84.98
multi_gpt_gpt_claude 52.35 52.77 3.61 1.69 1.34 2.36 0.46 0.13 85.50
multi_gpt_gpt-4.1_llama 52.69 52.77 3.51 1.66 1.32 2.30 0.46 0.13 85.40
multi_gpt-4.1_gpt-4.1_gpt-4.1 87.82 88.40 6.91 5.03 0.96 6.88 0.59 0.09 83.54
gemini_claude 29.66 30.34 6.29 5.37 0.61 2.27 0.53 0.08 79.23
multi_gpt_gpt_gpt 52.52 52.94 3.49 1.66 1.29 2.35 0.46 0.13 84.99
multi_gpt_claude_claude 50.84 51.01 3.55 1.70 1.29 2.33 0.46 0.13 82.64
multi_gpt_gpt-4.1_claude 51.26 51.68 3.29 1.60 1.13 2.29 0.45 0.14 86.28
single_claude_gpt 69.16 74.37 7.19 5.52 0.93 4.62 0.69 0.10 82.75
multi_gpt-4.1_gpt_gpt 87.90 88.40 6.77 4.96 0.90 6.74 0.60 0.09 85.71
multi_gpt-4.1_gpt-4.1_gpt 88.66 88.74 6.74 4.88 0.93 6.96 0.59 0.09 83.40
multi_gpt_gpt-4.1_gemini-flash 53.70 54.03 3.62 1.70 1.32 2.47 0.46 0.13 85.50
multi_gpt_claude_gemini-flash 52.10 52.35 3.41 1.59 1.25 2.34 0.45 0.13 82.71
single_o3-mini_gpt 1.93 1.93 0.03 0.01 0.00 0.03 0.00 0.03 73.24
multi_deepseek_deepseek_deepseek 81.76 85.88 7.56 4.86 1.45 4.96 0.76 0.10 82.76

Table 7: Process metrics for the single and multi-agent systems on the test set
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Agent System Computational Cost Lab Cost
multi_gemini-flash_gemini-flash_gpt 16.26 49.56
multi_gemini-flash_gpt_gpt 21.29 53.63
multi_o3-mini_o3-mini_o3-mini 14.99 43.43
multi_claude_gpt_gpt 37.03 86.43
multi_gemini-flash_gemini-flash_gemini-flash 12.72 48.38
single_gemini-flash_gpt 20.53 62.81
multi_claude_claude_gpt 35.78 87.04
multi_llama_gpt_gpt 20.89 58.62
multi_gemini_gemini_gemini 19.62 80.14
multi_gemini_gpt_gpt 23.34 99.05
multi_gemini_gemini_gpt 21.20 94.38
single_gpt-4.1_gpt 42.21 115.76
multi_claude_claude_claude 38.25 86.97
single_gpt_gpt 36.45 21.66
single_llama_gpt 26.12 71.71
single_deepseek_gpt 40.51 62.74
multi_llama_llama_gpt 15.77 61.74
multi_claude_gpt-4.1_gemini-flash 34.56 84.35
multi_llama_gpt-4.1_gemini-flash 22.90 69.52
multi_llama_llama_llama 12.06 57.29
multi_gpt_gpt_claude 18.85 14.14
multi_gpt_gpt-4.1_llama 15.62 13.43
multi_gpt-4.1_gpt-4.1_gpt-4.1 25.20 90.55
single_gemini_gpt 27.19 106.11
multi_gpt_gpt_gpt 16.40 14.09
multi_gpt_claude_claude 18.47 14.64
multi_gpt_gpt-4.1_claude 20.21 13.78
single_claude_gpt 57.37 85.21
multi_gpt-4.1_gpt_gpt 24.47 78.27
multi_gpt-4.1_gpt-4.1_gpt 24.06 77.02
multi_gpt_gpt-4.1_gemini-flash 15.75 14.36
multi_gpt_claude_gemini-flash 15.22 14.91
single_o3-mini_gpt 0.61 0.05
multi_deepseek_deepseek_deepseek 18.52 44.65
Table 8: Cost Efficiency metrics for the single and multi-agent systems on the test set
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